

Ant i-Aliased Fonts and UTF-8

Support

in OpenMot if 2.3

White Paper

 February 2006

Table of Contents

Introduction... 3

Importance of UTF-8 and Anti-Aliasing .. 3

What is UTF-8?... 3

What is Anti-Aliasing? ... 4

XFT Library for Anti-Aliased Fonts and UTF-8 Support .. 5

Anti-Aliasing Implementation Through XFT... 5

Implementation Overview .. 5

UTF-8 Support .. 7

UTF8_STRING Role for UTF8 Support in OpenMotif 2.3 ... 7

UTF-8 Usage Details .. 8

XFT Library Support .. 11

Examples... 11

Summary ... 13

 2

Introduction

OpenMot if 2.3 includes a major feature enhancem ent : the funct ionalit y of Open Mot if is now

extended to support UTF8 and Ant i-Aliased fonts through the XFT library. With these new

funct ionalit ies, OpenMot if 2.3 reasserts it self as a modern, compet it ive GUI toolkit .

This docum ent provides an overview of the core technologies used in this newly

implemented funct ionality, as well as details how they can be em ployed through st rategies

and usage exam ples.

Importance of UTF-8 and Anti-Aliasing

Ant i-Aliasing and UTF-8 are supported by the m ajor ity of m odern GUI - toolkits and have

becom e the de facto standard for any up- to-date GUI -program .

This sect ion provides general informat ion on UTF-8 and Ant i-Aliased fonts, as well as

describes how the new release of OpenMot if 2.3 benefits from their use.

What is UTF-8?

UTF-8 (8-bit Unicode Transformat ion Format) is a character encoding system that can

represent any universal character in the Unicode standard. For this reason, UTF-8 has

become the preferred method for encoding email, web pages, and other places where

characters are stored or st reamed.

Before UTF-8 emerged, UNI X users had to use various ASCI I extensions. Support for these

encodings was incom plete and unsat isfactory. The advantage of UTF-8 encoding is that the

Unicode can be used in a convenient and backwards compat ible way in environments that

were designed ent irely around ASCI I , such as UNI X. No conversion is needed for ASCI I :

every valid ASCI I st r ing is also a valid UTF-8 st r ing. Recent open source operat ing system s

such as Linux, FreeBSD, Solaris, etc. use the UTF-8 character encoding system by default .

For m ore inform at ion on UTF-8, please see www.unicode.org.

3

What is Anti-Aliasing?

Ant i-Aliasing is the technique of m inim izing jagged edges on graphic im ages using

intermediate shades. Ant i-Aliasing of fonts makes them m uch more readable and visually

appealing, especially on TFT displays.

Please see Figure 1, where the font is not ant i-aliased, and compare it to Figure 2, where

the font is ant i-aliased.

Fig u r e 1

The let ters below (see Figure 2) show how Ant i-Aliasing adds gray pixels around the border

between black and white, result ing in a visually smoothed out line.

Fig u r e 2

Graphics are affected by ant i-aliasing in the sam e way that text is.

I n OpenMot if 2.3, ant i-aliased fonts are supported using the client -side XFT library.

 4

XFT Library for Anti-Aliased Fonts and UTF-8 Support

XFT is a library for displaying fonts with the X Window System . I t was designed to support

scalable and ant i-aliased fonts.

Unlike t radit ional X11 font rendering, XFT does not use the X Font Server. The XFT library

renders fonts within the applicat ion space. That way, the applicat ion has direct access to the

font definit ions and full cont rol over rendering character glyphs.

I nternally, XFT uses the fontconfig library to locate fonts and the FreeType library to render

them .

XFT has becom e the de facto standard. I t is used by the desktop environments KDE and

Gnome, as well as the Firefox browser and many other applicat ions.

OpenMot if 2.3 uses XFT to implement Ant i-Aliased fonts and UTF-8 support .

Anti-Aliasing Implementation Through XFT

This sect ion describes how the OpenMot if 2.3 GUI toolk it funct ionalit y can be extended with

Ant i-Aliased font support without breaking backward com pat ibilit y. The possibilit y of font

Ant i-Aliasing in exist ing applicat ions without recompilat ion is also discussed.

Implementation Overview

Support for ant i-aliased fonts is im plem ented via XFT. XFT int roduces the concept of a

“Render Table” , which replaces the use of XFont st ructures. This approach perm its the

specificat ion of ant i-aliased fonts, not only via API , but also via resource files without

recom pilat ion of the program .

Since Render Tables and rendit ions can be specified not only programmat ically but also

through resource file set t ings, program m ers will often be able to add Ant i-Aliasing support

to their applicat ions by simply adding new set t ings to the applicat ion’s resource files.

 5

I n som e cases, code changes will be necessary to add Ant i-Aliasing support . These cases

generally exist in applicat ions that use the t radit ional X font st ructure, specifically

XFontSt ruct . For ant i-aliased font support in such applicat ions, the following possibilit ies

should be considered:

� Using the Render Tables instead of X font st ructures

� Extending the applicat ions using t radit ional X font st ructures with XFT font st ructures

(XftFont) support

Specifying the Render Table with an ant i-aliased font in the resource file or fallback

resources is st raight forward. For example, the following:

*List.renderTable: variable

*List.renderTable.variable.underlineType: SINGLE_LINE

*List.renderTable.variable.renditionForeground: Red

*List.renderTable.variable.fontName: Times

*List.renderTable.variable.fontSize: 10

*List.renderTable.variable.fontType: FONT_IS_XFT

would set the Render Table resource of the List widget to a Render Table with “variable”

rendit ion, valued for those resources described in the specificat ion.

 6

UTF-8 Support

UTF-8 support is m ost ly based on the interface provided by the Xlib and XFT libraries. The

implem entat ion st rategy entails updat ing exist ing code with addit ional cases to handle UTF-

8 data. Xlib and XFT provide UTF-8 capable alternat ives to alm ost all text handling

funct ions.

Special cases are implemented for fonts with I SO 10646 character encoding.

I SO 10646 defines several character encoding forms for the Universal Character Set . The

sim plest , UCS-2, uses a single code value and allows exact ly two bytes (one 16-bit word)

to represent that value. UCS-2 thereby perm its a binary representat ion of every code point

in the Basic Mult ilingual Plane (BMP) , as long as the code point represents a character.

UCS-2 cannot represent code points outside the BMP. For more informat ion on the BMP,

please see ht tp: / / www.unicode.org/ roadm aps/ bm p/ .

The UTF-8 support int roduced in OpenMot if 2.3 enables the t ransparent conversion of UTF-8

to UCS-2 that allows I SO 10646 fonts to render mult i- language text as easily as single-

language text . UTF-8 should be supported together with the new X11 atom UTF8_STRI NG.

UTF8_STRING Role for UTF8 Support in OpenMotif 2.3

Previously, text data t ransfers between OpenMot if-based applicat ions and program s

support ing UTF8_STRING with lim ited or no support of COMPOUND_TEXT could cause

interoperabilit y issues. Therefore, in this new 2.3 release, OpenMot if now supports a new

UTF8_STRING atom together with UTF-8.

UTF8_STRING is a new X11 atom current ly in the process of being standardized by X.Org. I t

seam lessly interchanges internat ional textual data between X11 clients, and is mainly used

for select ion interchange (“Cut and Paste” and “Drag and Drop”) .

UTF8_STRING was carefully designed to preserve compat ibilit y with exist ing X11 clients. A

UTF8_STRING-enabled client will use UTF8_STRI NG for interchange with other new clients,

and fall back to COMPOUND_TEXT when interact ing with older clients.

 7

UTF-8 Usage Details

This new feature will allow UTF-8 encoded XmStrings to be specified for all resources that

accept Xm Strings.

To properly display non-Lat in1 text (other UTF-8 characters) , one of the following should be

used:

� a Render Table with an I SO 10646 font

� a fontset or XFT font type

I f no font is specified, OpenMot if will use a " fixed" font (Lat in1 charset) by default .

I n the source code, UTF-8 st r ings can be defined by a st r ing in any supported charset , e.g.:

s = XmStringCreateLocalized("✂�✁✄☎", NULL);

I n resource files and fallback resources, you can use UTF-8 encoded st r ings in the same way

as st r ings encoded with other supported charsets, e.g.:

 *labelString: ✂�✁✄☎

I n addit ion, the new property type and select ion target UTF8_STRING that carr ies UTF-8

encoded Unicode text is supported by the toolkit in the same way as other atoms.

 8

This is the sample "Hello World" program using UTF-8:

#include <Xm/XmAll.h>

String fallback[] = {

 "*fontList: -misc-fixed-medium-r-normal--14-130-75-75-c-70-iso10646-1",

/*

 * alternatively you could do the same via Render Table specification:

 *

 * "*label.renderTable: rt",

 * "*rt.fontType: FONT_IS_FONT",

 * "*rt.fontName:

-misc-fixed-medium-r-normal--14-130-75-75-c-70-iso10646-1",

 */

 NULL

};

int main(int argc, char *argv[]) {

 Widget toplevel;

 Arg al[10];

 Cardinal ac;

 XtAppContext app;

 XmString str;

 XtSetLanguageProc(NULL, NULL, NULL);

 toplevel = XtAppInitialize(&app, "test", NULL, 0, &argc, argv, fallback,

 NULL, 0);

 ac = 0;

 XtSetArg(al[ac], XmNlabelType, XmSTRING); ac++;

 str = XmStringCreateLocalized("✁✂�✁✁");

 XtSetArg(al[ac], XmNlabelString, str); ac++;

 (void)XtCreateManagedWidget("label", xmLabelWidgetClass, toplevel, al, ac);

 XmStringFree(str);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app);

}

 9

Here is a sam ple ut ftest .c program :

#include <Xm/XmAll.h>

int main(int argc, char *argv[]) {

Widget toplevel;

Arg al[10];

Cardinal ac;

XtAppContext app;

XmString str;

XtSetLanguageProc(NULL, NULL, NULL);

toplevel = XtAppInitialize(&app, "Utftest", NULL, 0, &argc, argv, NULL, NULL, 0);

ac = 0;

XtSetArg(al[ac], XmNlabelType, XmSTRING); ac++;

(void)XtCreateManagedWidget("label", xmLabelWidgetClass, toplevel, NULL, 0);

XtRealizeWidget(toplevel);

XtAppMainLoop(app);

}

When run with the resources:

*fontList: -misc-fixed-medium-r-normal--14-130-75-75-c-70-iso10646-1

*label.labelString: text-✁✂�✁✁

The program will produce the output shown in Figure 3.

Fig u r e 3

A com m on m istake when first using UTF-8 st r ings is to forget to specify an I SO 10646 font .

These resources:

*fontList: -misc-fixed-medium-r-normal--14-130-75-75-c-70-iso8859-1

*label.labelString: text-✁✂�✁✁

Would produce output as shown in Figure 4.

Fig u r e 4

 10

XFT Library Support

Support of the XFT library int roduced in OpenMot if 2.3 offers the abilit y to use client -side

ant i-aliased fonts from Mot if applicat ions.

This feature is available v ia the new Rendit ion Font Type named XmFONT_I S_XFT. When

specifying these rendit ions, the following addit ional resources may be needed:

� xftFont - I nit ialized XftFont st ructure; it is an analog to the font resource of rendit ions

of type FONT_I S_FONT

� fontStyle- Font style st r ing (like "Bold I talic")

� fontFoundry- Font foundry st r ing (like "m onotype")

� fontEncoding- Font encoding st r ing (like " iso8859-1")

� fontSize- Font size integer

Examples

The following code fragment establishes a rendit ion that would display a com pound st r ing in

the Times font , in blue color, and underlined with a single line.

 int n;

 XmRendition Rendition;

 XmStringTag RenditionTag;

 XtVaGetValues(parent, XmNcolormap, &cmap, NULL);

 if (XAllocNamedColor(XtDisplay(parent), cmap, "blue", &color, &unused))

 {

 pixel_color = color.pixel;

 } else {

 pixel_color = XmUNSPECIFIED_PIXEL;

 }

 n = 0;

 XtSetArg(args[n], XmNrenditionForeground, pixel_color); n++;

 XtSetArg(args[n], XmNfontName, "Times"); n++;

 XtSetArg(args[n], XmNfontType, XmFONT_IS_XFT); n++;

 XtSetArg(args[n], XmNunderlineType, XmSINGLE_LINE); n++;

 RenditionTag = (XmStringTag) "Rendition1";

 Rendition = XmRenditionCreate(parent, RenditionTag, args, n);

 11

Specifying this type of rendit ion from UI L is also possible, for exam ple:

object

 rendition: XmRendition {

 arguments {

 XmNtag = XmFONTLIST_DEFAULT_TAG;

 XmNfontName = 'Times';

 XmNfontType = XmFONT_IS_XFT;

 };

 controls {

 XmTabList tabl;

 };

 };

would declare a rendit ion with the ant i-aliased font Times.

Finally, you can apply render tables to unmodified Mot if applicat ions from the

command line. The first –xrm specificat ion applies a render table to all widgets,

and the second asks for a font scaled to 42 points to be applied to that render

table.

MotifApp -xrm '*renderTable:rt' \
 -xrm '*rt.font:-urw-urw gothic l-semibold-r-normal--42-0-0-0-p-0-iso10646-1'

 12

Summary

The latest improvement of OpenMot if, version 2.3, makes it compet it ive with any other

modern toolkit , providing many benefits in the major features enhancements of UTF_8

support and ant i-aliased fonts.

UTF-8 support in this new release has the following advantages:

� Offers a m odern, easy approach to render mult i- language text

� Allows for a t ransparent t ransfer between OpenMot if applicat ions and programs that

support the UTF8_STRI NG atom

� Provides the possibilit y to render mult i- language text as easily as single- language

text

Ant i-Aliased fonts provide m any advantages for both the end users and the developers who

im plem ent this feature:

� Provides a more readable and pleasing experience to the end user

� Easy for the developer to implement

Support for ant i-aliased fonts can be added without breaking com pat ibilit y with exist ing

applicat ions that do not use Render Tables. Applicat ions that already use Render Tables

could take advantage of ant i-aliased fonts with simple changes to the resource file.

For more informat ion on OpenMot if 2.3, please see the Mot ifZone, www.m ot ifzone.org.

 13

